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Testing the Derjaguin approximation for colloidal mixtures of spheres and disks

S. M. Oversteegen and H. N. W. Lekkerkerker
Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584CH Utrecht

The Netherlands
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The depletion potential between two large hard spheres due to the presence of hard disks has been derived
up to first order in the number density of disks by Piech and Walz@J. Colloid Interface Sci.232, 86 ~2000!#
using the Derjaguin approximation. Using the generalized Gibbs equation, we compare this depletion potential
to the exact solution up to first order in density. The Derjaguin approximation turns out to be surprisingly
accurate; for aspect ratios smaller than 0.25 the error is less than 1%.
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I. INTRODUCTION

Mixtures of colloidal particles with different sizes an
shapes are ubiquitous in industry~e.g., paints, pharmaceut
cals, and drilling fluids!, food science, and the biologica
realm @1,2#. Moreover, there is much interest in understan
ing the properties of mixed colloidal suspensions at a fun
mental microscopic level. It is commonly accepted that m
tual asymmetry of the particles in these mixtures alone m
induce a net attraction between them by the so-called de
tion effect.

For binary mixtures of asymmetric hard spheres t
depletion effect has been established both experimen
@3–8# and theoretically@9–16#. When large spheres of diam
eter s approach each other up to a distanceh smaller than
the diameter of a smaller sphere,a, the latter is expelled from
the gap. Using the Derjaguin approximation, the result
depletion potential fora!s up to first order in the numbe
density of the smaller spheres,ns , is given by@17,18#

Wspheres

kBT
52

p

4
nsa

2sS 12
h

aD 2

. ~1!

Up to first order in the density of small spheres the ex
depletion potential can also be calculated analytically@19#.
The relative error introduced by the Derjaguin approximat
can from straightfoward algebra be determined as 1
13s/2a) at contact of the large spheres. Hence, for a s
ratio of the spheres ofa/s50.1 the Derjaguin approximation
underestimatesthe depth of the potential by 6%.

Also colloidal mixtures of hard spheres with hard ro
give an entropically driven phase separation according
experiments@20,21# as well as theory@22–24#. When placed
between two spheres, the orientational entropy of infinit
thin rods of lengthL decreases. The consequent press
deficit leads to a depletion potential that reads up to fi
order in the number densitynr using the Derjaguin approxi
mation @25–27#

Wrods

kBT
52

p

12
nrL

2sS 12
h

L D 3

. ~2!

Calculations@28# reveal what error the Derjaguin approxim
tion has introduced for the depletion of large spheres du
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rods. For a size ratio of the lengthL of the rods over the
diameter of the sphere ofL/s50.1, the Derjaguin approxi-
mation overestimatesthe potential at contact by 7%. Th
potential turns out to be quite accurate indeed from exp
ments@29–31#.

In contrast to bimodal mixtures of colloidal spheres a
mixtures of colloidal spheres with rods, those of colloid
spheres with platelets has received little attention. The ph
behavior of platelets may nevertheless be of great interes
phenomena observed in, e.g., soil science, drilling muds,
paints @32,33#. Although the phase behavior of binary mix
tures of hard colloidal rods and plates@34–36# as well as
plates and nonadsorbing polymer@37–39# have been studied
binary mixtures of hard spheres with plates are still un
plored. Recently, a stable system of hard spheres and p
lets has been developed in our laboratory@40#, as presented
in Fig. 1, which opens up the possibility for fundamen
studies underpinning the aforementioned practical appl
tions.

Analogous to rods, the orientation of platelets is restric
when confined between two spheres. Approximating
platelets by disks, i.e., infinitely thin of diameterD, the
depletion potential for such systems up to first order in
number density of disks,np , reads by applying the Der
jaguin approximation@41#

Wdisks

kBT
52

p

6
npD2sF3

2

h

D
arcsin

h

D
2

3

4
p

h

D

1H 11
1

2 S h

D D 2JA12S h

D D 2G . ~3!

Comparison of the depletion potentials of hard sphe
due to disks, Eq.~3!, small spheres, Eq.~1!, or rods, Eq.~2!,
reveals that all have the general form

Wi

kBT
52cini,

2sFi S h

, D , ~4!

where , is the characteristic length scale of the depleti
agenti. The prefactorci determines the depth of the pote
tial, whereasFi determines its distance dependence t
equals unity at contact of the large spheres. In terms of v
ume fractions, it is readily seen that rods are compared
©2003 The American Physical Society04-1
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small spheres already at low volume fractions effect
depletion agents, whereas colloidal platelets give rise to
traction at intermediate volume fractions. From the nume
cal plot, Fig. 2, it is seen that the distance dependence of
decays fastest, that of spheres the slowest, and disks a
between.

From their top view, disks may be regarded as tw
dimensional spheres and from their side view as infinit
thin rods. Consequently, upon rotating the particles at a gi
number density the apparent volume fraction of disks se
higher than that of spheres but lower than that of rods. T
is also exhibited by the depletion potential due to disks
which it was shown above that both the depth and the
tance dependence is in between that of rods and s
spheres. If we carry this comparison further, the error int
duced by the Derjaguin approximation in Eq.~3! may also be
assumed to be intermediate. That is, the Derjaguin appr
mation could be surprisingly accurate for mixtures of th
platelets with large spheres. In this paper we will show t
this is indeed the case. To that end, we first rederive Eq.~3!
from the Gibbs adsorption equation by applying the D
jaguin approximation and subsequently do the full calcu
tion.

II. THE SPHERE-DISK DEPLETION POTENTIAL

A. The Derjaguin approximation

Consider a dilute dispersion of disks of diameterD. The
depletion potential between two spheres due to the pres

FIG. 1. TEM micrograph of a mixture of silica spheres (s
5700 nm) with silica coated gibbsite plates~diameter D
5200 nm, thicknessL530 nm).
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of small disks (D!s) can be derived from the interactio
between two walls using the Derjaguin approximation@42#

Wdisks~h!5
1

2
psE

h

`

w~h8!dh8, ~5!

wherew is the potential of mean force per unit area of dis
between two planar walls. Next we will derive an express
for w.

In the vicinity of a wall, at a distanceh,D from the
other, the disk can no longer assume all configurations
illustrated in Fig. 3~a!. As a consequence of this loss of co
figurational entropy the number density of disks that are
contact with the walls,ni(h), is less than the coexisting
number density in the bulk,np . Hence, there will be a ne
attraction between the walls according to the generali
Gibbs equation@43–46#

2S ]W

]mp
D

h

5N~h!2N~`!. ~6!

HereN(h) andN(`) are the~ensemble averaged! number of
disks in the system when the walls are at separationh or
infinity, respectively. Expressing Eq.~6! per unit area, we
obtain

2S ]w

]mp
D

h

5G~h!2G~`!, ~7!

whereG is the number of disks per unit area adsorbed at b
walls,

FIG. 2. The distance dependenceFi of the depletion potential of
hard spheres due to the presence of other particles, Eq.~4!, as a
function of the scaled interparticle distance,h/,. The depth of the
potential is given byci . Disks ~full line, ,5D) are intermediate
depletion agents compared to rods~dashed line,,5L) and small
spheres~dotted line,,5a).
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G~h!5E
0

h

@ni~x!2np#dx. ~8!

Since we consider a dilute dispersion of disks, we may w
the chemical potential of the disks asmp5mp

01kBT ln np .
Hence, integration of Eq.~7! gives

w~h!52kBTE
0

np
@G~h!2G~`!#

1

np8
dnp8

52kBT@G~h!2G~`!#. ~9!

Here we used that up to first order,G is linear innp .
The relative number density of disks between the t

confining planar walls can be derived from the orientatio
freedom of the director of the disk. Consider the angleu of
the director of a disk with the normal on one of the walls.
bulk this angle can describe all polar angles, whereas in
vicinity of a wall it is limited to u0 which follows from
sinu05x/(D/2), as indicated in Fig. 3~b!. Hence, forh,D it
follows from Eq.~8! that

G~h!52E
0

h/2

npS E
0

u0
sinudu21D dx

522E
0

h/2

npA12S x

D/2D
2

dx

52
1

2
npDFarcsin

h

D
1

h

D
A12S h

D D 2G . ~10!

If the two walls are infinitely apart, a disk can rota
freely until it approaches the wall up to a distancex,D/2.
Completely analogous to Eq.~10!, we find

FIG. 3. ~a! In the bulk the directorvW of a disk with diameterD
can describe a full unit sphere~right!, whereas a disk at a distanc
x,D/2 to a wall only describes part of it~left!. ~b! The maximum

angleu0 between the directorvW and the normal on a planar wallnW

follows from sinu05x/(D/2).
02140
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G~`!522E
0

D/2

npA12S x

D/2D
2

dx52np

p

4
D. ~11!

Insertion of Eqs.~10! and ~11! into Eq. ~9! straightfor-
wardly gives the potential of mean force per unit area of
walls due to disks up to first order in the number density

w~h!52
1

2
kBTnpDFp

2
2arcsin

h

D
1

h

D
A12S h

D D 2G .
~12!

Substitution of Eq.~12! into the Derjaguin approximation
Eq. ~5!, yields the depletion potential of hard spheres due
hard disks, Eq.~3!.

Where Eq.~12! is exact to first order in the number den
sity, Eq. ~3! is approximate due to the Derjaguin approac
Although the usefulness of the Derjaguin approximation
depletion forces is questioned@47,48#, we believe with
Henderson@49# that this analysis is justified in the appropr
ate limits, i.e., dilute suspensions of small depletion age
We will show that the Derjaguin approximation for spher
in a dilute suspension of disks is actually very accurate up
relatively large aspect ratios.

B. Exact solution

In order to arrive at the exact depletion potential of dilu
suspensions of disks, we may write Eq.~6!, in analogy to Eq.
~9!, as

W

kBT
52@N~h!2N~`!#5NI1NII2NIII . ~13!

The NI term accounts for the number of conformations t
disks now may assume in the bulk when the two spheres
closer thanh,D, whereasNII accounts for the actual num
ber of possible orientations in that gap. The number of c
formations that used to be accessible when not hindered
the other sphere is denoted byNIII . The three contributions
NI , NII , andNIII are depicted schematically in Fig. 4~a! and
made more explicit below. Henceforth we will drop the e
plicit distance dependence of these terms.

Around each of the two spheres there is a layer of thi
nessD/2 in which the disks are hindered by the spheres;
so-called depletion zone. When two spheres approach e
other up to a distance 0,h,D the depletion zones of both
spheres overlap, which restricts the number of conformati
of the disk there further. However, due to the overlap, dis
in the bulk have more volume accessible to move freely. T
is reflected by the gainNI in the bulk and follows from the
volume of a spherical cap of height (D2h)/2

NI5
p

6
npD2s3S 3

2
1

D

s
1

1

2

h

s D S 12
h

D D 2

. ~14!
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The number of particlesNII that fits in the gap between th
two spheres is formally given by the volume integral ov
the number density of particles that fit in the gap

NII54pE
max(0,h2D/2)

D/2 E
c i (x)

c f (x)S s

2
1xD 2

n~x,c!sincdcdx.

~15!

The radial integration overx goes from the edge of the ove
lap volume to the outer shell of a depletion zone. In orde
describe the whole volume, for each radial position an in
gral over the anglesc that describe the overlap volume
required. From Fig. 4~b! basic trigonometry gives

c i~x!5H 0 if x<
h

2

arccosH s1h

s12xJ if x.
h

2

~16!

and

FIG. 4. ~a! The three contributions to the excess adsorption d
sity for h5D/2. ~b! Definitions of the distances and angles of a d
in the overlapping depletion zone relative to sphereA. ~c! The over-
lap of cones relative to spheresA andB @cf. Fig. 3~a!# determines
the area accessible to a disk at a certain position between the
spheres.
02140
r

o
-

c f~x!5arccosH ~s1h!21S 1

2
s1xD 2

2
1

4
~s1D !2

~s1h!~s12x!
J .

~17!

Remains the actual number of conformations,n(x,c)/np, a
disk can assume at a given positionx,c. As can be seen from
Fig. 3, at that position the disk can move within a certa
cone around the normal of each of the spheres ignoring
other. From the intersection of both cones follows the p
sible number of conformations between both spheres, as
be seen from Fig. 4~c!,

n~x,c!

np
5

1

pEb2uA

uB
sinufB~u!du

5
1

pEb2uA

uB
sinu arccosS cosuA2cosu cosb

sinu sinb Ddu.

~18!

Here uA and uB give the widths of the accessible con
around the normals on spheresA andB, respectively. More-
over, the angle between these normals is given byb. If b
1uA.p2uB , complementary conformations can be a
sumed, which adds an extra term similar to Eq.~18! but the
lower limit equal top2b2uA . Expression for the angleuA
can be derived straightforwardly from Fig. 4~b!, where we
must distinguish the case forx,x0, when the face of the
disk touches the sphere first, fromx.x0 when the edge of
the disk touches the spheres, wherex05 1

2 (AD21s22s).
Similarly the expression foruB can be derived.

Since the depletion potential requires the excess amo
N(h)2N(`), we finally have to subtract the number of co
formations of disks when the two depletions zones did
yet overlap, i.e.,h.D. Analogously to Eq.~15!, we find

NIII 52npE
max(0,h2D/2)

D/2

A~x!$12cosu~x!%dx. ~19!

Here the area in the overlap volume at radial distancex is
given by

A~x!5

pS 1

2
s1xD

s1h H s~x2h!2~x2h!21
1

2
sD1

1

4
D2J .

~20!

The anglesu(x) follow, like uA anduB , from

cosu~x!55
s

s12x
if x<x0

A12H S D

2 D 2

1x~s1x!

~s12x!S D

2 D J 2

if x.x0 .

~21!

-
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III. RESULTS

Invoking Eqs. ~14!, ~15!, and ~19!, we determined the
depletion potential from Eq.~13!. All integrals are solved
numerically using Romberg integration@50# up to a numeri-
cal accuracy of 531025. As can be seen from Fig. 5~a!,
even for a size ratioD/s51.0, the resemblance between t
exact solution~symbols! and the Derjaguin approximatio
~line!, Eq. ~3!, of the depletion potential is striking. Fo
smaller aspect ratios the difference is on the scale of
depletion potential hardly visible. We therefore plot the d
ference between the exact solution and the Derjaguin
proximation in Fig. 5~b!.

It is seen from Fig. 5 that the discrepancy between
exact solution and the Derjaguin approximation is the larg
at contact (h/s50). In Fig. 6 we show these values fo
several size ratios. We fitted that data and find

FIG. 5. ~a! An actual profile~symbols! and Eq.~3! ~solid line!
for D/s51.0. ~b! The difference of the distance dependence of
depletion potential of the exact solution compared to the Derjag
approximation for several size ratios.
02140
e

p-

e
st

W~h50!

kBT
52

p

6
npD2sH 111.1674S D

s D
111.1674S D

s D10.1938S D

s D 2J .

~22!

From this equation we find that forD/s,0.25 the error is
less than 1%.

IV. DISCUSSION

We conclude that the Derjaguin approximation for t
depletion potential between spheres due to disks, Eq.~3!,
yields very accurate results. The Derjaguin approximat
underestimates the potential for a bimodal mixture
spheres, Eq.~1!, while it overestimates it for sphere-rod mix
tures, Eq.~2!. The generic intermediate behavior of dis
leads to the result that the Derjaguin approximation is ind
surprisingly accurate. For instance, an error of20.2% is
found for D/s50.1 at contact, whereas for the same asp
ratios it is 16% and27% for mixtures of spheres with
small spheres and spheres with rods, respectively.

So far we only considered disks, i.e., infinitely thin plat
lets. Going to platelets of finite thickness, e.g., oblate ell
soids, the deviation from the Derjaguin approximation m
change sign@41#. We nevertheless reckon the Derjaguin a
proximation in dilute suspensions to be a useful guide to
experiments of colloidal mixtures of spheres and platelet
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